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Learning for combinatorial 
optimisation
Traveling scientists / salesman 
problem (TSP) 

Kool, van Hoof & Welling, ICLR 2019
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Learning for combinatorial 
optimisation
Traveling scientists / salesman 
problem (TSP) 
NP-hard, so no polynomial-
time complete solvers (probably) 
Large problems solved using 
hand-crafted heuristics 
Limitations of such heuristics?

Kool, van Hoof & Welling, ICLR 2019



 Herke van Hoof |  Sequential decision making and sampling5

Learning for combinatorial 
optimisation
On well-known problem like TSP, 
decades of optimisations have 
yielded powerful heuristics, but: 

• In practice, almost always have 
additional objectives or constraints: 
heuristics might not work 

• ‘Best’ heuristic depends on the type 
of problem. How to choose which 
one to use? 

Kool, van Hoof & Welling, ICLR 2019
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Learning for combinatorial 
optimisation
On well-known problem like TSP, 
decades of optimisations have 
yielded powerful heuristics, but: 

• In practice, almost always have 
additional objectives or constraints: 
heuristics might not work 

• ‘Best’ heuristic depends on the type 
of problem. How to choose which 
one to use? 

Instead, try learning a heuristic 
appropriate for current problem 
formulation and instance type

Kool, van Hoof & Welling, ICLR 2019



 Herke van Hoof |  Sequential decision making and sampling7

How does that work?
In a nutshell….
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How does that work?

Instance Solution  
with length  

Model = 
p(next node | partial tour)
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How does that work?

Instance Solution  
with length  

Model = 
p(next node | partial tour)

Optimize expected cost Ep✓(⌧ |s)[L(⌧)]
<latexit sha1_base64="yDNz9msVEWDNmZte9m8HT9fe5LI="></latexit>

Randomized algorithm defined by network parameters 𝜽 

In a nutshell….

Kool, van Hoof & Welling, ICLR 2019
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Attention model architecture

Architecture using graph convolutions 

Kool, van Hoof & Welling, ICLR 2019
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Attention model architecture
Decoder context: 
(graph, first node, last node)
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Attention model architecture
Decoder context: 
(graph, first node, last node)

⌧ = (3, 1, 2, 4)
<latexit sha1_base64="hql6FFriU+hKq5u3oxAfPE+RCQ8="></latexit>

Kool, van Hoof & Welling, ICLR 2019
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Parameter optimisation

Randomized algorithm 
with expected cost: Ep✓(⌧ |s)[L(⌧)]

<latexit sha1_base64="yDNz9msVEWDNmZte9m8HT9fe5LI="></latexit>

Evaluation requires sum over all tours 

Kool, van Hoof & Welling, ICLR 2019
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Parameter optimisation

How to optimize 
? 

Randomized algorithm 
with expected cost: Ep✓(⌧ |s)[L(⌧)]

<latexit sha1_base64="yDNz9msVEWDNmZte9m8HT9fe5LI=">AAADaHichVLbbtNAEN0mXIq5pfCAUF+sRpUSCUU2F9HHSgiJBx4KIm2l2LLG60mzynrt7q5bme1+CV/DK3wBv8BXsHYMIikSI1k+PnPO7Hh20pIzpYPgx1avf+Pmrdvbd7y79+4/eDjYeXSsikpSnNKCF/I0BYWcCZxqpjmelhIhTzmepMs3Tf7kAqVihfik6xLjHM4EmzMK2lHJ4FWUg16kqXlrE1MmJmpLGomZjfQCNdhRpKG6UmM7e9/CsR/7yWAYTII2/Osg7MCQdHGU7PR2o6ygVY5CUw5KzcKg1LEBqRnlaL2oUlgCXcIZzhwUkKOKTduM9fcdk/nzQrpHaL9l/3YYyJWq89Qpm79Rm7mG/FduVun5QWyYKCuNgq4Omlfc14XfDMvPmESqee0AUMlcrz5dgASq3Ui9SOAlLfIcRGaitODZBVI7C+PVR9NQwU07X5mbYWit9b2Io46c7rd+vUhZcEZr6wAbNSoD9qp9Kzu261KJlyAzu6pPgZuP7gI7z7POYzc855lbKGvORxu6zdrlSlf+T6c0Qta0m1fJn5Zb2doNaLb8bL39hmogZ6kEWZsUalQCtfXcOoWby3MdHD+fhC8mwYeXw8ODbrG2yS7ZIyMSktfkkLwjR2RKKPlCvpJv5HvvZ3/Qf9J/upL2tjrPY7IW/b1fawojLA==</latexit>

Evaluation requires sum over all tours 

Kool, van Hoof & Welling, ICLR 2019



 Herke van Hoof |  Sequential decision making and sampling11

Parameter optimisation

How to optimize 
? 

Randomized algorithm 
with expected cost: Ep✓(⌧ |s)[L(⌧)]

<latexit sha1_base64="yDNz9msVEWDNmZte9m8HT9fe5LI="></latexit>

Evaluation requires sum over all tours 
Reinforcement learning approximates 
gradient using samples from              (Bello) 
‘good tours’: probability ↑ 
‘bad tours’: probability ↓ 
Decide whether 𝜏  ‘good’ or ‘bad’ by 
comparing to most likely tour (Kool)

p✓(⌧ |s)
<latexit sha1_base64="n30zD7ZopW6wQ1FTXOX5wcv2Cnk="></latexit>

Kool, van Hoof & Welling, ICLR 2019
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Learning TSP heuristics

Now we have a model and an algorithm, we just need to 
generate many problems and keep training…. 

• Generate a problem 
• ‘Guess’ a tour using current network parameters 
• < length of most likely tour: increase probability using backprop  

(and vice versa) 
• repeat…

Kool, van Hoof & Welling, ICLR 2019
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Performance

Kool, van Hoof & Welling, ICLR 2019
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Performance

most comparable 
(learned, single 
tour)

Kool, van Hoof & Welling, ICLR 2019

Ours  
(various instance sizes)
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Further improvements

If we are sampling multiple tours, we might sample duplicates. 
In this setting, duplicates don’t provide information. 

• Can we sample ‘without replacement’? 

For a single learning step, generate two solutions 
(sampled tour & most likely tour) 

• Can we compare sampled tours to each other, and thus eliminate the 
need to generate ‘baseline’ solutions? 
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Further improvements

Reinforcement learning 
Learning involves random 
sampling from the model.  
Randomness ensures 
exploration of new potential 
solutions 
Duplicate samples do not 
give us any new information.  

Direct search (BFS/DFS/BS) 
Direct search for best route  
 
Deterministic process (doesn’t 
explore, limited use for 
learning)  
Multiple good routes without 
duplicates

Can we combine best of both worlds? 

Kool, van Hoof & Welling, ICML 2019
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Beam search

OpenNMT/MIT licence
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Further improvements

We can get the best of both worlds! 
Stochastic beam search provides ‘sampling without 
replacement’ for sequence models  
In NLP experiments, showed: 

• As optimiser, a good trade-off between higher diversity and 
performance in finding good translations 

• As sampler, lower variance than sampling-with-replacement schemes 

How about its use in combinatorial optimisation?

Kool, van Hoof & Welling, ICML 2019
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Further improvements

If we are sampling multiple tours, we might sample duplicates. 
In this setting, duplicates don’t provide information. 

• Can we sample ‘without replacement’? 

For a single learning step, generate two solutions 
(sampled tour & most likely tour) 

• Can we compare sampled tours to each other, and thus eliminate the 
need to generate ‘baseline’ solutions? 
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Stochastic beam search for faster 
learning
Remember the training procedure 

• Generate a problem 
• ‘Guess’ a tour using current network parameters 
• < most likely tour length: increase probability using backprop  

(and vice versa) 
• repeat…

Kool, van Hoof & Welling, ICLR structured prediction WS 2019 
Kool, van Hoof & Welling, ICLR 2020
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Stochastic beam search for faster 
learning
Remember the training procedure 

• Generate a problem 
• ‘Guess’ a tour using current network parameters 
• < most likely tour length: increase probability using backprop  

(and vice versa) 
• repeat…

Kool, van Hoof & Welling, ICLR structured prediction WS 2019 
Kool, van Hoof & Welling, ICLR 2020

k tours without replacement
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Stochastic beam search for faster 
learning
Remember the training procedure 

• Generate a problem 
• ‘Guess’ a tour using current network parameters 
• < most likely tour length: increase probability using backprop  

(and vice versa) 
• repeat…

Kool, van Hoof & Welling, ICLR structured prediction WS 2019 
Kool, van Hoof & Welling, ICLR 2020

average
k tours without replacement
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Stochastic beam search for faster learning

Using samples without replacement changes the sampling 
distribution! 

•Importance weights? (high variance) 
•Normalized importance weights (biased!) 

Instead of treating sampled elements independently, can derive 
a different gradient estimator based on complete sampled set: 
Unordered set policy gradient estimator 
Lower-variance estimate that is still unbiased!

Kool, van Hoof & Welling, ICLR 2020
Kool, van Hoof & Welling, ICLR 2019 WS
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Kool, van Hoof & Welling, ICLR 2020

22

Stochastic beam search for faster 
learning
Traveling salesman problem using low-variance estimator
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Kool, van Hoof & Welling, ICLR 2020

22

Stochastic beam search for faster 
learning

single sample [ICLR 2019] 

Traveling salesman problem using low-variance estimator
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Kool, van Hoof & Welling, ICLR 2020

22

Stochastic beam search for faster 
learning

with replacement [ICLR 2019 WS; Mnih & Rezende 2016]
single sample [ICLR 2019] 

Traveling salesman problem using low-variance estimator
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Stochastic beam search for faster 
learning

with replacement [ICLR 2019 WS; Mnih & Rezende 2016]

without replacement, normalised IW (biased) [ICLR 2019 WS]

single sample [ICLR 2019] 

Traveling salesman problem using low-variance estimator
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Kool, van Hoof & Welling, ICLR 2020
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Stochastic beam search for faster 
learning

without replacement, unordered set estimator [ICLR 2020]

with replacement [ICLR 2019 WS; Mnih & Rezende 2016]

without replacement, normalised IW (biased) [ICLR 2019 WS]

single sample [ICLR 2019] 

Traveling salesman problem using low-variance estimator
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Scalability a main limiting factor!
Generalization to problems of different size 

• Network trained on small instances performs so-so on large ones 

Sample efficiency 
• Machine learning and RL need lots of data (600k tours for TSP)
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Computational efficiency
Earlier approach requires network pass for each city 
Means overall quadratic scaling 

 
[Kool, van Hoof, Gromicho, Welling; Working paper - arXiv:2102.11756]
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Computational efficiency
Earlier approach requires network pass for each city 
Means overall quadratic scaling 

Alternative idea:  
DPDP: Deep Policy Dynamic Programming 
Single neural network pass to identify good ‘edges’.  
Then conventional dynamic programming to find tour 
 

 
[Kool, van Hoof, Gromicho, Welling; Working paper - arXiv:2102.11756]
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Computational efficiency

DPDP LKH

 
[Kool, van Hoof, Gromicho, Welling; Working paper - arXiv:2102.11756]

Competitive to highly optimised LKH heuristic 
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Dynamic problems

Dynamic problems, e.g. routing with dynamically changing 
costs, constraints, objective, of practical interest 
ML & RL suitable to handle the inherent uncertainty 
Current public-private (NWO/NS) project about train shunting 
(With Matthew Macfarlane, Diederik Roijers (HU), Wan-Jui Lee (NS)) 

• Finding plans that are robust to minor changes in specification 
• Learning local repair heuristics  
• Dealing with trade-off between performance and robustness 
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Conclusions

Combinatorial optimisation problems 
• Allow end-to-end deep learning as alternative to manually 

defined heuristics 
• Have special structure, can be exploited to learn solutions 
• Scaling to large instances is still challenging 
• Dynamic problems: interesting challenges & opportunities 
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Thanks

Wouter Kool Max Welling
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Thanks

Questions?

Wouter Kool Max Welling
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Experiment: Translation Diversity

• Generate  translations 

• Plot BLEU against diversity 

• Vary softmax temperature 

• Compare: 
• Beam Search 
• Stochastic Beam Search 
• Sampling 
• Diverse Beam Search 

(Vijayakumar et al., 2018)

𝑘

Kool, van Hoof & Welling, ICML 2019
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• Estimate expected 
sentence-level BLEU 

• Plot mean and 95% interval 
vs. num samples 

• Compare: 
• Monte Carlo Sampling 
• Stochastic Beam Search with 

(normalized) Importance 
Weighted estimator 

• Beam Search with 
deterministic estimate 

Experiment: BLEU score estimation

Kool, van Hoof & Welling, ICML 2019
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